

Qwyit[®] Time

This document details how QCy^{TM} is the only existing viable Perfectly Secret (Unbreakable) Post-Quantum Cryptography (PQC). For this document, as well as in general discussions/communications, $Qwyit^{\otimes}$ refers to the Company, $Qwyit^{TM}$ refers to the complete Authentication and Data Encryption protocol and QCy^{TM} refers to the encryption cipher. Definitions and operation of all of our security technology can be found in their current *Reference Guides* available from Qwyit[®]; go to www.qwyit.com.

Introduction

Solving a cryptographic encryption cipher has two aspects that directly affect discovering the original plaintext message (e.g., *Breaking* the algorithm):

- 1. Method
 - a. The process/algorithm used to encrypt
- 2. Time
 - a. How long it takes to operate the 'decrypt-to-the-correct-plaintext-without-the-key' process

These, in turn, have pertinent elements:

- How strong is the Method?
- What resources are available when spending Time?

Therefore:

A *Break* occurs when one has spent enough time filled with resources to overcome the method's strength using some process. $Break = Method_{Strength}$ overcome in $Time_{Resources}$

Discussion

<u>Strength</u>

Cryptography uses all kinds of definitions of cryptographic strength – these are overly complex such that only cryptographers (security experts) understand them. Let's use plain English descriptions for general comprehension. After all, *routine use of digital security is best practiced and provided when the 'average user' fully understands how and why it actually works.*

Shannon's <u>Communication Theory of Secrecy Systems</u> provides the *strength* scale: Theoretical and Practical. He breaks these down into their results:

- Theoretical Security
 - Perfect Secrecy Mathematically provably Unbreakable
 - There will never be a *Break*, such that *Time* is forever
 - An example *Method* of this is the One Time Pad (OTP)¹

¹ While Quantum Cryptography appears to be theoretically unbreakable, <u>the limitations</u> and binary PS existence, render it questionable Qwyit LLC www.qwyit.com Page **1** of **2**

Qwyit LLC

- Strongly Ideal System Perfect Secrecy Unbreakable; difficult to prove mathematically, yet the Method delivers the same result: multiple different plaintexts produce identical ciphertext
 - There will never be a Break, such that Time is forever
 - The only existing *Method* of this is QCy[™]
- Practical Security
 - All single-result ciphers: every different plaintext produces different ciphertext
 - There will always be a *Break*, given enough *Time*
 - This is every cipher created other than Perfect Secrecy (OTP, QCy[™])

<u>Resources</u>

Resources can generally be summarized into the 'current computing capability'; which is used to power the *Time (T)* process to break an algorithm. An algorithm is considered time/resource broken in several different definitions: 'solution found prior to brute force time', 'solution found in less than the design criteria time'. Etc.

The meaningful definition is that the *Break* can be performed in *Real Time*. In math/computing, this is called Polynomial Time; in real life, for average users, this is called *Now*. 'Now' means that in a time in which the protection should be valid, it is not – it can be compromised/broken yielding loss to the user. This may be instantly, daily, monthly, yearly – realistically:

A *Break* occurs when the current computing capability can decipher an algorithm's ciphertext into plaintext without any secret knowledge at *Time Now.*

This means that when *Time* was:

- Ancient before computing
- Analog early machine computation available
- Digital Now, 2023

...Practical Security was sufficient. It is cryptographically acceptable to use today's *Methods*, because the *resources* available are unable to result in *Breaks Now. Time* is still a singular security protection.

But when *Time* becomes:

- Quantum soon...
- Artificial coming...
- Forever *NOW* eventually!

... Practical Security is impractical and useless, *Breaks* occur *Now*. One must use Theoretical Security.

Conclusions

In order to provide actual *Time Independent* Theoretical Security in Post-Quantum Cryptography, such that encryption has any value, only OTPs and QCy^{TM} are available. Using these is the only choice; the only *Method* where, no matter the resources and escalating computing power, there is never a *Break*. Since OTPs have key management practically issues, there's only one remaining cryptographically forever Perfectly Secret *Method*: QCy^{TM} . Start using it *Now*. It's Qwyit[®] Time.