
Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 1 of 22

QwyitTalk™ Unbreakable Discussion

Discussion

Version 1.3 January 2018

Author: Mr. Paul McGough, CTO, Qwyit LLC

Copyright Notice

Copyright © 2018 Qwyit LLC. All Rights Reserved.

Abstract

This paper provides a discussion of the QwyitTalk™ system security, and challenges to break the
system. As a pre-requisite to this discussion, it’s important to first read the QwyitTalk™ Overview, the
QwyitTalk™ and Qwyit™ reference guides, as well as any and all of our papers and presentations.

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 2 of 22

Contents
The Unbreakable Cipher... 3

Notes on the Qwyit Primitives for the QwyitTalk™ Cryptosystem ... 3

QwyitTalk™ Keys ... 4

QwyitTalk™ Core Processes .. 6

Initial Authentication Token/Credential Distribution (Verified Setup – VSU) ... 6

Per Message Token/Credential Distribution (Authentication Handshake – AH) and Messaging

(QwyitTalk™Cipher) .. 7

The Qwyit™ Cipher .. 8

The QwyitTalk™ Challenges .. 8

QwyitTalk™ Challenge #1 – Separate, Unique DSKs ... 10

QwyitTalk™ Challenge #2 – Identical unique CT, Same PT ... 12

QwyitTalk™ Challenge #3 – Identical same CT, Different PT .. 14

QwyitTalk™ Challenge #4 – A Message Test .. 16

QDS ... 17

Client1 ... 18

Client2 ... 19

Client1 ... 20

Client2 ... 21

Client1 ... 21

Afterward .. 22

References ... 22

Epilogue .. 22

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 3 of 22

QwyitTalk™ - The First Unbreakable Crypto System,

Delivering The OTP Unbreakable Cipher

This document details the provable security (unbreakable) of the QwyitTalk™ Authentication and
Encryption Service (QwyitTalk™, QT™), Security as a Service. For more on the full Qwyit protocol, and
QwyitTalk™ in particular, go to www.qwyit.com.

The Unbreakable Cipher

http://www.cs.miami.edu/home/burt/learning/Csc609.051/notes/02.html

That link provides a review of the proof of a one-time-pad, an OTP. As stated in that article “The intuition

is that any message can be transformed into any cipher (of the same length) by a pad, and all transformations

are equally likely.” That explains it: if any result can’t be differentiated from any possibility, then it’s
unbreakable.

In order to build an unbreakable cryptosystem, one must deliver an OTP authentically to every
participant, whenever they need one to communicate unbreakably with any other participant. It seems
Cryptography has abandoned looking into solutions for OTP key delivery for whatever reasons – but
since it’s a straight line from a single use, unique key bit for every PT bit to unbreakable, if a delivery
system of those keys (method and process) can be shown to meet the same unique, single-use
standard, that straight line continues to an unbreakable cryptosystem.

Notes on the Qwyit Primitives for the QwyitTalk™ Cryptosystem

The Qwyit™ Protocol primitives that create the QwyitTalk™ cryptosystem are the unique PDAF, OWC,
and the Combine And Extract. These provide the basis of the unbreakable cryptosystem with
embedded authentication and on-the-fly OTP message keys. (Please see the Ref Docs for full
descriptions of these primitives and their capabilities.)

These primitives, built with underdetermined linear equations, are the ‘things’ needed to turn a fast,
simple linear system into an unbreakable cryptosystem:

 The One Way Cut (OWC) is an extremely computationally efficient one-way gate. It has been
used by some of our Japanese cohorts in a few of their awarded cryptographic patents

o The OWC one-way gate mathematically stops one getting from one equation to the next:
there isn’t any way to recognize either possible input from any other based on any known
result, let alone the correct ones

 The PDAF (Position Digit Algebra Function) is an incredibly efficient PRNG
o There is a ‘philosophy’ of randomness that isn’t accounted for in ‘traditional’ mathematics

(at least we’re not aware of it – but it may well certainly exist): rearranging a random
number, in a manner that is unsolvable, retains its randomness, whether or not it would
pass some ‘statistical measurement’

 Empirically, this is: “1234” is random. Mod10 addition of an unknown, second
random number “4321”, generated by ‘reaching into’ and selecting digits from the
first number using a second number or even from itself, for example leads to

http://www.qwyit.com/
http://www.cs.miami.edu/home/burt/learning/Csc609.051/notes/02.html

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 4 of 22

“6338”, which is as random as its two inputs since all of the numbers are contained
in underdetermined equations

 This simple Modular addition can continually rearrange the randomness,
retaining digit distributions, etc. – as long as the weakness of tending to a
single digit result in every position is never allowed (i.e., IF one approaches
such results, simply reseed the starting random values – we don’t believe
this ever happens, but it might)

o This process, empirically, can be performed significantly more times
than it would ever need to occur in any implementation

o The PDAF has wonderfully variant means in which to perform Random Rearrangement,
as we’ll call this property, such that it can be implemented to pass ‘statistical
measurement’

o The PDAF has an additional property of Selective Update, as we’ll call the property of
using its structure and/or values to update itself, randomly and underdetermined, in the
same manner by two shared parties without any connection between them (NIL
communication). The result is one-way gate protected (always underdetermined) from
recovering the original, starting values (providing Perfect Forward Secrecy of every
message)

 The Combine and Extract are simply the PDAF in two parts, for efficiency and performance
o They retain the same Random Rearrangement property
o They are not used for Selective Update only because the PDAF has more flexibility

(results can be longer than the input, as well as operating on itself without any pointer key
– see the ref docs for complete description)

QwyitTalk™ Keys

QT™ Keys have 2 parts (Not asynchronous):

 A part that relates to its use

 A second part that relates to changing itself (and never used through to any end result)

When the 1st part is used – the part that makes child keys for encryption – that part is an OTP. The 2nd
part is never used for anything other than to swap out that 1st part – every time it is used.

Therefore, QT™ uses a secret key, in 2 parts, that changes every time it is used, and adds the other
ingredients (the primitives for operations) into the process, resulting in unbreakable:

 QT™ starts with a truly random Authentication key, in 2 parts
o Initial, secure delivery can be accomplished, as noted with several possible methods in

our papers, where performance is not an issue (Banks still mail PINs)

 QT™ then uses that key in 2 parts completely separated by purpose
o The method of separation is underdetermined with one way gates

 QT™ then builds truly random child Encryption keys from one Authentication key part completely
(mathematically) separated by purpose

o The method of separation is underdetermined with one way gates

 QT™ then uses the Encryption key only one time, on the same length Plaintext (True OTP)

 Every key is updated after every use
o The method of update is underdetermined with one way gates

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 5 of 22

QwyitTalk™ is the first unbreakable Cryptosystem. It delivers a provably secure OTP, as defined since
the message keys are truly random n-bit unique one-time-only use child keys made using
underdetermined math and one way gates; and the other system keys are never used more than once.

Summary (including Protocol operation found in the Tech reference guides)

 QwyitTalk™ is an underdetermined system of equations – these are unsolvable

 QwyitTalk™ is a pass-through trust model, where keys are important, while completely
unimportant and disposable (See the QwyitTalk™ Overview for this introduction/discussion)

 QwyitTalk™ provides a key management system whereby each participant has a unique OTP
key that is used to talk 100% authentically and 100% securely to any other participant

 QwyitTalk™ performs this key management with two processes
o Verified Setup Up (VSU)
o Authentication Handshake (AH)

 QwyitTalk™ processes result in the delivery of 100% private authentication key pairs for each
unique P2P communication

 The Qwyit™ Cipher delivers a 100% unbreakable OTP, using a new, mathematically
underdetermined encryption bit (not a fiddled bit) for each plaintext bit

 QwyitTalk™ as a cryptosystem is Unbreakable, and delivers the unbreakable Qwyit™ OTP
cipher

Here’s QwyitTalk™ with a discussion of the three processes: Initial Key Distribution (Verified Setup,
VSU), Authentication Handshake (AH) and the QT™ stream cipher (Messaging). Following are the
QwyitTalk™ Challenges. These deliver unbreakable proof.

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 6 of 22

QwyitTalk™ Core Processes

As a summation that can be found in detail in the Ref docs and our other papers, QwyitTalk™ is an exact replication of TLS; and that the
processes defined by TLS are the agreed-upon, necessary information exchanges in order to authenticate and secure messaging. We’re
focused here on unbreakable security, but the exact benefits of QT™ over TLS in performance, efficiency and improvement are substantial
– see the docs.

Initial Authentication Token/Credential Distribution (Verified Setup – VSU)

Architecture (Example method)

The QwyitTalk™ Reference Guide has a great deal of information on example methods for initial distribution (the VSU) of QT™ starting
MQK and MEK keys – which together make up the 512-bit DSK (current recommended length.) Since it is a requirement of keeping the
system secure (not unbreakable), for this paper, and every example and Challenge in it, the assumption is the same as for that of the
Unbreakable OTP: each participant has been delivered their unique key in a 100% secure manner.

So: A VSU has happened, all the QwyitTalk™ Clients have secure unique DSKs in two parts, MQKs and MEKs, and now we’re going to
talk authentically and securely to each other – in any format, app, protocol, configuration (1-1, 1-many, many-1, etc.).

Note: There are two distinct classes of interloper: active and silent. The active interloper, who we have covered already in the Intro
paper; they can be you, but you’ll be alerted, and they have to be you again in the real system, not just this public QT™ security

QwyitTalk™ Verified Set Up (VSU)

VSC1HTTPS Request
QT™ Client

QT™ Service

VSQ2 HTTPS MQK Reply

VSQ3 Email MEK reply

VSC5 QT™ Confirmation

VSQ4 SMS MEK reply

QwyitTalk™ Verified Set Up (VSU)

The VSU is like a Passport…or Driver’s License…or even a Birth

Certificate: they rely on each other, have some kind of process to

minimize fraud and deception…aren’t perfect…and generally

shouldn’t be assumed to be Important, but they mistakenly are.

QT™ can implement any system for Initial Key Distribution that

anyone/everyone feels is ‘good’: HTTPS, mail, email, phone, UPS,

drone, Amazon, in person, your Mother…all of these together, in

combination, in sequence:

It doesn’t matter how – the result is You Have A Unique Key, Known

Only To You and the QT™ QDS

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 7 of 22

channel, and they can’t go backwards for anything you’ve already done. The straightforward solution is to just perform another
VSU. AND/OR – if it’s a real system that is using a private QwyitTalk™ service as the authentication token, then there would
always be a you-to-your-key 7-digit hex PIN (minimally, everyone/anyone can remember 7-values, like a phone number) that is
never stored. This interloper’s capabilities are known, minimized and solved. If the majority believe it’s a good idea to implement
PINs, then we’ll put them in the Public QwyitTalk™.

Silent interloper: The listener, who knows every communication, from any source, at all times; except, of course, the in-person
(Spy-like) key delivery methods: in person meets, drops, etc. (espionage!) Without too much difficulty, even this interloper can be
defeated:

QwyitTalk™ is an underdetermined system: simply add an unknown. Since there isn’t any unbreakable way to extend an
unknown* in order to force The Listener to have to ‘do more work’ than already exists in the system; in order to thwart every
attack and return the unbreakable entropy, one simply/must add a new key. Make the key as large as the work you want
the listener to perform – if it’s forever, make it that current length (at publication: 256-bits).
*There is a way to expand unknown work – such as having an n-digit unknown that points into a z-digit unknown number vault, ‘delivering’ unique
results every use. This doesn’t expand the ‘work’ of delivering an out-of-band unknown single key, but does expand the work of figuring it out: deliver
a lot, point into it, work expands!

If you add a 256-bit key outside of QwyitTalk™ (un-listened), then you can use the Public System. Of course, as just noted, a
private QwyitTalk™ will subvert The Listener – but if you want to keep your messaging unbreakable even to The Listener w/any
particular public recipient, share another secret – sized appropriately to your particular requirements – outside the Public
QwyitTalk™ system, and then you can still use it. As there is controversy whether or not government agencies put ‘back doors’
into crypto products, it’s simple to put in a ‘front door’ allowing anyone using the Public QwyitTalk™ system to input ‘An Outside
Key’ into the formulation of every QTQS message. If implemented and used, it will thwart all The Listeners. The war ends at
Unbreakable. Privacy wins.

Next, the AH per-message key delivery and cipher unbreakable:

Per Message Token/Credential Distribution (Authentication Handshake – AH) and Messaging (QwyitTalk™Cipher)

The QT™ AH messages only include an encrypted SSK – there is no context for any decryption to result in positive knowledge of any
PT. This is unbreakable; every PT is possible for every/any CT.

The only question remaining about the QT™ cryptosystem is whether the messaging ciphertexts between two participants, after receipt
of their SSK, meet the unbreakable standard of an OTP:

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 8 of 22

The Qwyit™ Cipher

In either direction of The Qwyit™ Cipher, to create a single Child Key (W) for operation on a unique 256-bit Plaintext/Ciphertext there are:

 FOUR (4) equations
o MOD16, Combine (which is a Mod16), Extract (a pointer selection), and XOR (or MOD16)

 SIX (6) unknowns
o MEK, R, MQK, A, W, PT

For each next-Child Key, for operation on the next unique 256-bit PT/CT, there are:

 FOUR (4) equations
o MOD16, Combine (which is a Mod16), Extract (a pointer selection), and XOR (or MOD16)

 SEVEN (7) unknowns
o W, R, NextR, MQK, A, NextW, PT

Even a broken W resulting in a Known Plaintext attack doesn’t provide any knowledge on going forward (as the system looks identical as
it did at the start: 4 equations, 6 unknowns (the next PT)). Nor does it help in going backward, as one only has knowledge of two of the
unknowns (W and PT), but only one equation is solved (the XOR). Retracing to the three equations that led to the XOR, one is left with 4
unknowns (R, NextR or MEK [depending on whether it’s the first 256-bits or any succeeding 256-bits], MQK, and A) and 3 equations
(MOD16, Combine and Extract). The Qwyit™ cipher is unsolvable in either direction – even with a broken Message Key. (The one thing
a true OTP doesn’t really include are CPA attacks – OTPs are instantly useless if you know the PT. QT™ has accommodated this
‘vulnerability’ with its key distribution/key creation method, rendering known PT a dead-end ‘break’.

Unsolvable is Unbreakable.

For examples, and if you’re not convinced, work through the following Challenges.

The QwyitTalk™ Challenges

The following are four challenges that provide empirical evidence of the unbreakable properties of QwyitTalk™:

Challenge1

 The DSK updates provide mathematically separate new random versions of the starting, Authentication key (in two parts, MQK,
MEK) using the feature of Random Rearrangement provided by the Qwyit™ primitive, PDAF

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 9 of 22

Challenge2

 Multiple different DSKs will deliver identical Ciphertext from the same Plaintext and OR salt even through a chain of unique
Message Keys – the ciphertexts are all unique

Challenge3

 Multiple different DSKs will deliver identical Ciphertext from different Plaintexts yet same OR salt – the ciphertext is all identical
o This is true for a chain of unique Message Keys (although not shown due to the ever-increasing combinatorial

possibilities, even with 4-digit keys)

Challenge4

 A DSK to SSK to SMK message test with current 512-bit DSK/SSK – What are the key and plaintext results?

For all Challenges, in order to print ciphertext in this paper, all ciphertext is twice the length of the XOR byte result, where 2 hex chars
(each representing the Hi/Low 4-bits of a single byte) combine to be each byte of ciphertext. Example: 6D represents the ASCII byte “m”.

Again, in summary, QwyitTalk™ is unbreakable because:

 The cryptosystem can deliver unique DSKs that result in the same ciphertext (Challenges 1 and 2)

 The Message Keys are true OTPs, delivering identical ciphertext with indistinguishable plaintext possibilities (Challenge 3)

 Challenge 4 can’t be broken mathematically
o Guessing, PRNG breaks, etc. – anything less than presenting a method for delivering the keys and PT doesn’t apply

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 10 of 22

QwyitTalk™ Challenge #1 – Separate, Unique DSKs

The above is a screen capture of a small program written to perform 1M PDAF Random Rearrangements (RR); starting with PRNG
random keys, and ending with random keys. 1M ‘ephemeral’ key updates in this manner (or double-length extension along with an OWC)
provides a truly one-way gate; and have a long-lasting system capability, limiting the number of times a new key VSU delivery is ‘required’.

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 11 of 22

Challenge1: Demonstrate, show, and prove

 A PDAF is not a one-way gate – that one can find the starting keys in less space than brute force from a known result
o Be sure to familiarize yourself with the full capability of the PDAF function – starting offsets, pointing modes, cycle numbers,

skip values, etc. Whatever ‘less’ than brute force may exist can more than likely be recovered
o Be certain to include discovery of any reduction in strength in terms of the doubling+OWC option

 A key that passes random ‘qualification’ (however defined) is any less random after n PDAF RRs
o And how such a ‘loss’ results in a system vulnerability (since the upper level keys never encrypt anything but other keys)

 Any other issues w/the PDAF primitive (and in combination w/an OWC) for RR new, next use (as an OTP)

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 12 of 22

QwyitTalk™ Challenge #2 – Identical unique CT, Same PT

The above screen capture is from a small program written to encrypt the exact same PT (“I’m smarter than you” – sorry, that’s tongue-in-
cheek!) and the same OR (“7AACF9”). This shows that multiple different DSKs will deliver identical Ciphertext from the same Plaintext
and OR salt even through a chain of unique Message Keys (in the above, the 6-digit W’s are used in 4 re-configurations (using NextR)
over the 20-digit PT) – and that the ciphertexts are all unique. This is the same as not ever being sure what Pad encrypted ‘Attack at
dawn’, as the PT is the same, but the CT would be different.

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 13 of 22

You’ll notice I used small, 6-digit hex keys so that you can easily verify these results yourself – they were encrypted using the Qwyit™
cipher substituting a PDAF/OWC combination for the Combine/Extract (since the C/E function is more ‘complex’ in code when the key
length is shorter than the key base; and I simply didn’t want to write that, since I already had the PDAF ‘going around the edges’). You’ll
also notice that, because of the smaller-than-base length keys, some of the key pairs are almost identical (ex.: 11CC90/AB55A8 and
AACC92/AB55AA only having 1 digit different in each pair), and some are quite different. You won’t find that the case once the key-length
is longer than the base, as the Qwyit primitives will deliver all possible results when the matrices are full (i.e., when all of the selection
slots have values).

Challenge2: Demonstrate, show, and prove

 That although these are obvious, empirical examples of the underdetermined property of the Qwyit™ key processing, they are
somehow solvable such that you could determine which key pair was correct (not just valid).

 That somehow, using proper, current key lengths (256-bits at publication) will result in ‘easy’ determination of a valid key pair
o Some knowledgeable and motivated person may well want to present the combinatorial probabilities of the varying valid

key space – in relation to the starting space and in relation to the work required to find the first one
o Also determining a way to present how many NextR iterations any type/configuration of the starting DSKs any particular

valid set will contain/provide. The above small example has 11 key pairs appearing out of 100K random starting DSKs
(where there’s 1612 possible combinations) resulting through 4 iterations. How many would last more, how many less?

 IF you went to all of this work – one can only apply it to Known PT – see the next Challenge as to why

 And…what does Known PT get you in Qwyit™? (Nothing, we’re pretty sure…)

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 14 of 22

QwyitTalk™ Challenge #3 – Identical same CT, Different PT

The above screen capture is from a small program written to encrypt two different PTs (“Paul” and “Saul”) using the same OR (“631F”)
and resulting in different DSKs creating the exact same CT (this is the “Attack at Dawn” vs “Attack at Dusk” classic OTP dilemma).
Multiple different DSKs will deliver identical Ciphertext from different Plaintexts using the same OR salt – and the ciphertext is all
identical. In case you’re wondering why there are the same key pairs listed multiple times (it says it found 10, but there’s really only 4),
it’s because the easiest way to test this is to fix one PT/CT/OR result, and scan the other for matches – and I just didn’t bother to put in

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 15 of 22

code to check the result against any I’d already found (too slow, going through both sides) I also left that in there to make a point: there
are 164 possible CTs for each PT – but there are 168 possible DSKs making them – and from the last challenge, these will result in
different CT for the same PT on each side. I only captured one CT from one side, testing against only 100K random tests dipping into
the 168 possibilities from the other side (of which there are only 164 unique results, but those are also duplicated)…SO: how many times
does this happen across all those combinations? Enough to be Unbreakable. The accurate combinatorial possibilities can be described.

Challenge: Demonstrate, show, and prove

 That although these are obvious, empirical examples of the underdetermined property of the Qwyit™ key processing, they are
somehow solvable

 Somehow show that this is a problem – even though it matches the exact OTP classical proof

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 16 of 22

QwyitTalk™ Challenge #4 – A Message Test

A DSK to SSK to SMK message test with current 512-bit DSK/SSK – What are the key and plaintext results?

Here is the complete output: (Created from the QDS-Full-Example.exe QT™ Reference Program, available from Qwyit LLC)

During the AH, in order for Client1 to securely communicate with Client2, in response to Client1’s AHC1 request,
the QwyitTalk™ Security as a Service QDS sends this AHQ3 message to Client 1, and then Client1-to-Client2 messaging ensues:

 All QT™ missing keys and PT shown redacted (3333)
o The message traffic that would be sent openly is highlighted green, the commenting is informationally provided to explain

the processing, as performed by the QDS and QT™ clients

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 17 of 22

QDS
Now, I'll send out the AHQ3 to just Client1 with Client2's wrapped SSK

I need to get an OpenReturn in order to encrypt the AHQ3 for Client1

OpenReturn = 7F14FCCF88D221A6C6BE5CC4922722339644F0B75D192 62AD324CA6ED712276A

Click Continue in Client1...

Only AHQ3 is to Client1...

The AHQ3 Client1 message key is 3C00F45845B345F679966D4E876540F324C883F9448670984F56169283C4F044

The AHQ3 first ciphertext is

71750104040C710B03027770077676720F08017274060307790 50270040075060B0471090F77717B0D777E0607020F7A02730C0E09010802

087172757774070C02020006030C070D77017B7104760402077D01770170707C0971000305727E770075767C010A720F06770C0F0E030B7D

0504747307077F77080B747707030177

The AHQ3 Client2 message key is F4F09E8F018BE148C 35F84F12C41A42D38EFF3BC5DF8A49C8AD40C70BF8EF20C

The AHQ3 second ciphertext is

040277047B7D7C7507060D017672047C7B020D027A76717373710074710401710A087777717775010C07000871060F010E747D0C0874060

0720409047776037B777576067C7D0A73730501007572760C73770D070F0002080 305020770760A00017970027F0A76750707720178070B0

60903057106727175727E0F0607010500

[AHQ3: 0123456789ABCDEF, 7F14FCCF88D221A6C6BE5CC4922722339644F0B75D19262AD324CA6ED712276A,

71750104040C710B03027770077676720F0801727406030779050270040075060B0471090F77717B0D77 7E0607020F7A02730C0E09010802

087172757774070C02020006030C070D77017B7104760402077D01770170707C0971000305727E770075767C010A720F06770C0F0E030B7D

0504747307077F77080B747707030177,040277047B7D7C7507060D017672047C7B020D027A76717373710074710401710A0877777177750

10C0 7000871060F010E747D0C08740600720409047776037B777576067C7D0A73730501007572760C73770D070F0002080305020770760A0

0017970027F0A76750707720178070B060903057106727175727E0F0607010500] sent using Port 4180 to Client1

AHQ3 processing now switches to Client1 and Clie nt2

Click Continue in Client1...

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 18 of 22

Client1
Now I am going to talk to Client2 in our application...

First, I'll create a Qwyit Return (QR) value

QR is

DFEB16125CF4510FCC5091500D312F93773EF72D2AFFFE9AC3B40A5FC2AAEA04F7861E1E250E31337E6DACD7E9FEA5A0E9746 13DB8B10E2

32B0C6C03CFBF75AE

Click Continue in Client1...

Next, I'll use the SSK from the QDS and the just created QR to create a Session Master Key (SMK, in 2 halves, SQK and SEK)

New Client1 -Client2 SQK is 85FFCEE5C3408D0C4DDD4CCBAF7F2FC8075F6498B6EFF0F 5284C816FCDB4F73C

New Client1 -Client2 SEK is 018CF633E9993DE77BE710A0F854B02D03C1FA73D4FA914136AACDF1C72B18FA

Click Continue in Client1...

Now ready the message, which will be: 6k0vxhW_JVi6uWqRMihoyFNWvhlzXNmSgR99pD5_hITBF3yrqgFfS0eo219swmFu

Then, encryp t it using QwyitTalk...

OpenReturn for this message is B57BB6519D3077EC0A11B38AB3198183AF7E981AC9B3A87589D345E60CB9F8B1

The QTQS message key is D9E211F41000429C82718AF0726B31DF1E80C7B8CA09F1AB373B8F6B09835109

QwyitTalk Qwyit Start (QTQS) is

0123456789AB CDEF,

DFEB16125CF4510FCC5091500D312F93773EF72D2AFFFE9AC3B40A5FC2AAEA04F7861E1E250E31337E6DACD7E9FEA5A0E9 74613DB8B10E2

32B0C6C03CFBF75AE, B57BB6519D3077EC0A11B38AB3198183AF7E981AC9B3A87589D345E60CB9F8B1,

7F14FCCF88D221A6C6BE5CC4922722339644F0B75D19262AD324CA 6ED712276A,040277047B7D7C7507060D017672047C7B020D027A7671

7373710074710401710A087777717775010C07000871060F010E747D0C08740600720409047776037B777576067C7D0A7373050100757276

0C73770D070F0002080305020770760A00017970027F0A76750707720178070B060903057106727175727E0 F0607010500,72527544495911

6B7B66590641654811755B5F5E41070867415A5A386B7F291556170109337377672B08647B00023830425075246B76532D02080140425C76

4C

Now, QT processing continues in Client 2...

Click Continue in Client1...

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 19 of 22

Client2
I've just received a QTQS m essage from Client1...I'll process it!

First, I need to unwrap the SSK...

The Client2 AHQ3 received message key is: F4F09E8F018BE148C35F84F12C41A42D38EFF3BC5DF8A49C8AD40C70BF8EF20C

The Client2 AHQ3 received plaintext, which is the SSK, is:

B614B8D3775C3C0 D818DBB7BA24E003590217D7B9CF0026B659887100B1A1D381A06E825C49B0CB40D8A74D91F661B8D2A5D99462C499

32E1BAE61FE087CA35C

Next, I need to unwrap the SMK...

Now, take the just received QR and create the SMK for this message

New Client1 -Client2 SQK is 85FFCEE5C34 08D0C4DDD4CCBAF7F2FC8075F6498B6EFF0F5284C816FCDB4F73C

New Client1 -Client2 SEK is 018CF633E9993DE77BE710A0F854B02D03C1FA73D4FA914136AACDF1C72B18FA

Click Continue in Client1...

The QTQS message key is D9E211F41000429C82718AF0726B31DF1E80C7B8CA09F1AB373B8F6 B09835109

QTQS plaintext message is 6k0vxhW_JVi6uWqRMihoyFNWvhlzXNmSgR99pD5_hITBF3yrqgFfS0eo219swmFu

Now I'll reply back to Client1...message is: seSC7IpxZVGq6hRqKhbchHf0mJXdpD_QDlcGsVXGBdWJynOve8b.hmCZnwoiMChp

Click Continue in Client1...

OpenReturn f or this message is 6843989379FC5A8E7AB710F95D6D0B3723ACEBB3F0F0BBDE367008D45E2F9644

The QTQT message key is C9D694E21E2CC69BD694D5623ED049C793DE092DB70A79704DF2D7D021DD81EF

QwyitTalk Qwyit Talk (QTQT) is CBEC3BF4B47CA8B0, 6843989379FC5A8E7AB710F95D6D0B37 23ACEBB3F0F0BBDE367008D45E2F9644,

305C17750E7D354A6B137532755E6B330F5E5B572C7D50025E0F1C54447D1C667D5F2702436F6A030053670B4E577846517C241C2C5A076

A5C462B2D75722D36

Now, QT processing continues in Client 1...

Click Continue in Client1...

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 20 of 22

Client1
I've just received a QTQT message from Client2...I'll process it using our shared SMK keys and the sent Open Return!

The QTQT message key is C9D694E21E2CC69BD694D5623ED049C793DE092DB70A79704DF2D7D021DD81EF

QTQT plaintext message from Client 2 is seSC7IpxZVGq6 hRqKhbchHf0mJXdpD_QDlcGsVXGBdWJynOve8b.hmCZnwoiMChp

Click Continue in Client1...

After sending and receiving and the SMK key life is reached, both Clients perform a PDAF PFS ephemeral DSK key update

This is accomplished using the SQK and SEK in a PDAF. Optionally, for a 1,024 -bit length, and then performing an OWC to pare to 512 -bits

First, here in Client 1...

Click Continue in Client1...

Here is the PDAF result for Client1 new SQK/SEK keys:

D4F30625708CCCF7EC4C0835547FDB387BA3E687159555BDA4BFD04CA2292 530717C8BED670C5FC6392FF71A0EE6871750787CE7AB2EE27

935787DBAACE0BCFC73CC8E62BF0B5C8BB5CCE6B285C40FBDFFD7C8B878DBB80183047F231C77737443FC7AB53FFA59033D393B2A936E1

62A629A50178E5CC45D1CC14F9E89384A096AB362E1BEEFC57B6415B30D98D514004D152CDD6A1AACE6E79B66A6FB04E B0C613BBBA9ED

374D5E326D3B5AA7B32E5C95DD355AF2A338BBFF3B6D620BACE708D8CB3B22B2BF44FB0C546E479A081544866E1A10AE6EE1C4DB38D4E

BC2A1BF7049CABBB28A323268C3823B73F5F77370B6BEA3AC273666A1640A45374974D4F9

Here is OWC final result for Client1 new SQK key: 12677486A 088968B2D4F6EA8EAD0CB738 33BDC42C16BE4F85F3550008F456E7B

Here is OWC final result for Client1 new SEK key: 57E4DA8AC94B3868E4B184F08B19EBA7D66D255EFAEA46A719D699CBAA9ADB18
NOTE: That second key looks like it has more letters in it than numbers…OOOOHHH NOOOOO!!!!...leaking entropy…

Now, update the SMK in Client 2...

Click Continue in Client1...

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 21 of 22

Client2

Here is the PDAF result for Client2 new SQK/SEK keys:

D4F30625708CCCF7EC4C0835547FDB387BA3E687159555BDA4BFD04CA2292530717C8BED670C5FC6392FF71A0EE687175 0787CE7AB2EE27

935787DBAACE0BCFC73CC8E62BF0B5C8BB5CCE6B285C40FBDFFD7C8B878DBB80183047F231C77737443FC7AB53FFA59033D393B2A936E1

62A629A50178E5CC45D1CC14F9E89384A096AB362E1BEEFC57B6415B30D98D514004D152CDD6A1AACE6E79B66A6FB04EB0C613BBBA9ED

374D5E326D3B5AA7B32E5C9 5DD355AF2A338BBFF3B6D620BACE708D8CB3B22B2BF44FB0C546E479A081544866E1A10AE6EE1C4DB38D4E

BC2A1BF7049CABBB28A323268C3823B73F5F77370B6BEA3AC273666A1640A45374974D4F9

Here is OWC final result for Client2 new SQK key: 12677486A088968B2D4F6EA8EAD0CB73833BDC42C16BE 4F85F3550008F456E7B

Here is OWC final result for Client2 new SEK key: 57E4DA8AC94B3868E4B184F08B19EBA7D66D255EFAEA46A719D699CBAA9ADB18

Click Continue in Client1...

This concludes the AH and QwyitTalk demonstration. Thank you!

Client1
This concludes the AH and QwyitTalk demonstration. Thank you!

THIS COMPLETES CHALLENGE #4

Challenge: Demonstrate, show, and prove

 The Answer – keys and PT

 Provide rational response to the real question: Whether or not you agree with us on the full capabilities of QT™, the performance
is unquestionably superior (see 2015 NIST Lightweight Cryptography benchmark submission), and its potential is substantial –
and it is unbreakable… why on earth aren’t you using it somehow/somewhere?

Qwyit LLC QwyitTalk™ Unbreakable

Qwyit LLC www.qwyit.com Page 22 of 22

Afterward

We think it’s important, just as a recap, to state that, unequivocally, there are absolutely no new cryptographic ‘processes’ in
QwyitTalk™ that haven’t been invented; and, of course, that’s the whole point: QT™ works just like all of the well-known, well-defined,
well-researched, well-thought out, well-attacked crypto best-practices:

 QwyitTalk™ Security as a Service is TLS

 The Qwyit™ Cipher works just like any other block/stream cipher
o Random IV (OR)
o Key mixing to derive child keys
o Child keys perform quick-step encryption (XOR, etc.)
o Embedded authentication (called Additional Authenticated Data (AAD) and other terms)

The result is something quite different, though, than the inputs: QT™ is unbreakable.

References

www.qwyit.com

All of the pertinent papers are available there – and references are included.

Epilogue

We’d like to mention all of the real cryptographers that helped us make QT™ the complete system it is today:

Dr. Alan Sherman, UMBC, whose early critique forced us to complete the full protocol, matching the system’s properties to our claims
Dr. Hatsukazu Tanaka, Kobe Institute of Computing, whose acceptance and promotion of our work was given its highest praise by
including it in his own – extending his research on key expansion and ciphers
Dr. Giovanni Di Crescenzo, NYU Tandon School of Engineering, whose full, in-depth independent reviews – and NIST
submission/work – and constant questioning of our work, led us here – completion

All truth passes through three stages. First, it is ridiculed. Second, it is violently opposed.

Third, it is accepted as being self-evident. - Arthur Schopenhauer

http://www.qwyit.com/

